Предварительно

Микросхема интегральная 1508ПЛ8Т. Техническое описание.

АННОТАЦИЯ

Микросхема интегральная 1508ПЛ8Т представляет собой двухканальный цифровой вычислительный синтезатор (ЦВС, DDS, Direct Digital Synthesizer). Обеспечивает формирование гармонических квадратурных колебаний и сигналов с линейно-частотной модуляцией (ЛЧМ), амплитудно-фазовой (QAM), частотной и фазовой манипуляцией (ЧМ и ФМ) на частоте дискретизации до 1 ГГц.

СОДЕРЖАНИЕ

1.	Основные особенности	
	1.1. Состав микросхемы	
	1.2. Основные технические характеристики:	
	Условное графическое обозначение	
3.	Функциональное описание	
	3.1. Режим синтеза гармонического сигнала	8
	3.2. Режим модуляции	9
	3.3. Режим синтеза ЛЧМ сигнала	9
	3.3.1. Режим коррекции	
4.	Выводы БИС	
	4.1. Назначение выводов	
	4.2. Расположение выводов.	
	4.3. Назначение выводов SEL в различных режимах	
5	Внутреннее адресное пространство.	
٥.	5.1. Адресное пространство управления DDS	13
	5.2. SWRST	15
	5.3. DEVID	
	5.4. SEL REG	
	5.5. CTR	
	5.6. SYNC	
	5.7. CLR	
	5.8. LINK	
	5.9. ROUTE	
	5.10. CHx_TSW	
	5.11. CHx_dPhy_L	
	5.12. CHx_dPhy_M	
	5.13. CHx_dPhy_H	
	5.14. CHx_Py	
	5.15. CHx_Muly	18
	5.16. CHx_Offsety	18
	5.17. CHx_dPh_all_L	18
	5.18. CHx_dPh_all_M	18
	5.19. CHx_dPh_all_H	18
	5.20. CHx_P_all	18
	5.21. CHx_Mul_all	
	5.22. CHx Offset all	
	5.23. CHx_LS_CTR	
	5.24. CHx_LS_CRFMIN	
	5.25. CHx_LS_F1(2)_L(M, H)	19
	5.26. CHx LS Ph1(2)	
	5.27. CHx_LS_dFy_L	
	5.28. CHx_LS_dFy_M	
	5.29. CHx_LS_dFy_H	
	5.31. CHx_LS_TPH2_L(M, H)	
	5.32. CHx_LS_TPH3_L(M, H)	
_	5.33. CHx_LS_TPH4_L(M, H)	
6.	Описание интерфейсов	
	6.1. Параллельный порт управления DDS.	
	6.2. Линк-порт	
	6.2.1. Формат данных:	
	6.2.2. Управление скоростью	
	6.3. Последовательный порт управления DDS	23
	6.4. Цифро-аналоговый преобразователь	24
7.	Типовые схемы включения	25
	7.1. Двухканальный режим	25
	7.2. Одноканальный режим	
	7.3. Режим ЛЧМ с умножением частоты	

ОАО НПЦ "ЭЛВИС"

8.	Электрические характеристики	28
9.	Временные характеристики	30

1. ОСНОВНЫЕ ОСОБЕННОСТИ

1.1. Состав микросхемы

- Два независимых канала синтеза;
- **ñ** Программируемый делитель тактовой частоты;
- **ñ** Приемник тактового сигнала с пониженным джиттером;
- **n** Быстродействующий компаратор;
- **п** Последовательный синхронный порт;
- ñ 16-битный параллельный порт;
- **ñ** 4-разрядный линк-порт;
- **n** Интерфейс прямого управления;
- **ñ** Устройство синхронизации

1.2. Основные технические характеристики:

- Частота дискретизации двух независимых каналов 1 ГГц;
- 64 профиля модуляции сигнала в каждом канале;
- ñ 2 профиля ЛЧМ
- **ñ** Независимое управление частотой, фазой, амплитудой, постоянным смещением каждого канала;
- **ñ** Два 10-битных ЦАП;
- **ñ** Аккумулятор частоты 48 бит.
- $\tilde{\mathbf{n}}$ Аккумулятор фазы 48 бит
- **n** 16-разрядный регистр управления смещением фазы;
- **ñ** 13-разрядный четырехквадрантный амплитудный модулятор;
- **ñ** 12-разрядный регистр управления постоянным смещением выходного сигнала;
- **ñ** Кусочно-линейная коррекция параметров сигнала в режиме ЛЧМ;
- **ñ** Возможность рандомизации фазы и амплитуды;
- **ñ** Возможность синхронизации нескольких микросхем;
- **ñ** Возможность «плавного» переключения параметров модуляции
- 1.8 В напряжение питания ядра;
- **ñ** 3.3 В напряжение буферов входов и выходов;
- ñ 1.8, 3.3 В напряжение питания ЦАП;
- **ñ** 3.3 В напряжение питания компаратора;

2. УСЛОВНОЕ ГРАФИЧЕСКОЕ ОБОЗНАЧЕНИЕ

	IREF1		CMP_OP	
	IREF2		CMP_OM	
	RSTn	DDS		
	CLKP			
	CLKM			
_	CLKDP			
	CLKDM			
	CMP_INP			
	CMP_INM			
_	SEL1[5:0]			
	SEL2[5:0]			
	SDI		OUTP1	
_	SDO		OUTM1	
_	SCK			
	SCSn		OUTP2	
_	WRn		OUTM2	
	RDn			
_	CSn			
	ADR			
_	DATA[15:0]			
	CMP_VDD			
	CMP_GND			
	CVDD			
	CGND			
	PVDD			
	PGND			
	AVDD			
	DVDD			
_	AVDD			
_	AVDD1			
_	AVDD2			
_	DVDD1			
	DVDD2			
	AGND			

Сумматор 2

Коммутатор

Гауссов

Схема

линейной

Выходной коммутатор

Параллельный

порт

Последовательный

Компаратор

WRn

CMP INF

3. ФУНКЦИОНАЛЬНОЕ ОПИСАНИЕ CLKOP C

Преобразователь

ф аза-амплитуда

Память профилей ЛЧМ (2 профиля)

Память профилей

модуляции (64 профиля)

Схема

управления

канала

Рис. 3.1: Функциональная диаграмма 1508ПЛ8Т

Канап 2

Умножитель

Цифровой синтезатор содержит два идентичных канала («Канал 1» и «Канал 2»), реализующих функции формирования модулированного сигнала в цифровой области, два цифро-аналоговых преобразователя (ЦАП1, ЦАП2), выходной коммутатор, параллельный 16-разрядный порт, последовательный синхронный порт, линк-порт, схемы управления и синхронизации. Также на кристалле находится компаратор.

Параллельный и последовательный порты позволяют осуществлять запись и чтение конфигурационных регистров синтезатора для задания режимов, тестирования и осуществления модуляции сигнала.

Линк-порт позволяет осуществлять модуляцию сигнала и задавать скорость следования модулирующих символов.

Каждый канал содержит 48-разрядный аккумулятор частоты, 48-разрядный аккумулятор фазы, память профилей профилей ЛЧМ (2 профиля), память профилей модуляции (64 профиля), схему линейной интерполяции, гауссов фильтр, генератор фазового выбеляющего шума, схемы управления.

Аккумулятор частоты имеет разрядность 48 бит, выходная разрядность 48 бит.

Аккумулятор фазы имеет разрядность 48 бит, выходная разрядность 17 бит.

Сумматор 1 имеет входную разрядность 17 бит (текущая фаза), 16 бит (смещение фазы), 4 бита (выбеляющий шум). Выходная разрядность – 15 бит.

Преобразователь фаза — амплитуда имеет входную разрядность $15 \, \text{бит}$, выходную разрядность — $12 \, \text{бит}$.

Умножитель имеет входную разрядность 12 бит (текущая амплитуда), 13 бит (коэффициент усиления), выходная разрядность 12 бит.

Сумматор 2 имеет входную разрядность 12 бит, выходную разрядность – 12 бит.

Каждый из 64 профилей модуляции содержит 48-разрядный регистр приращения фазы (dPh), 16-разрядный регистр смещения фазы (P), 13-разрядный регистр амплитуды (Mul) и 12-разрядный регистр постоянного смещения (Offset) синтезируемого сигнала. В режиме синтеза ЛЧМ память профилей может использоваться для хранения узловых значений параметров частотно-зависимой коррекции.

Профиль ЛЧМ содержит 48-разрядный регистр приращения частоты, 48-разрядный регистр начальной частоты и 16-разрядный регистр начальной фазы.

Гауссов фильтр осуществляет фильтрацию параметров модуляции. Длина импульсной характеристики данного фильтра задается регистром TSW.

Схема линейной интерполяции используется в режиме коррекции при синтезе ЛЧМ и осуществляет вычисление значений параметров коррекции для промежуточных частот методом кусочно-линейной интерполяции. Такая коррекция позволяет скомпенсировать искажения АЧХ ЦАП вида $\sin(x)/x$, а также ввести произвольные предыскажения для компенсации погрешностей аналоговой части тракта.

Выходной коммутатор осуществляет, в зависимости от режима, суммирование сигналов с выходов каналов, добавление амплитудного шума и ограничение разрядности сигнала с 12 бит до 10 бит перед подачей на соответствующий ЦАП.

Компаратор может использоваться для преобразования гармонического синтезированного сигнала в прямоугольный.

Схема синхронизации осуществляет прием тактового сигнала с одного из дифференциальных входов: CLKP/CLKM, CLKDP/CLKDM и обеспечивает формирование тактирующих импульсов для остальных блоков микросхемы. Выбор источника тактового сигнала осуществляется подачей логического уровня на вход CSEL.

3.1. Режим синтеза гармонического сигнала

В режиме синтеза гармонического сигнала аккумулятор частоты не используется.

Аккумулятор фазы увеличивает свое значение на величину, записанную в регистры $\underline{\text{CHx dPhy L}}$ (разряды [15:0]), $\underline{\text{CHx dPhy M}}$ (разряды [31:16]), $\underline{\text{CHx dPhy M}}$ (разряды [47:32]), где x – номер канала (1 или 2), а y – номер профиля (0-63), с тактовой частотой ЦАП. Таким образом, значение выходной частоты определяется

соотношением:
$$F_{out} = \frac{F_{\underline{H}} * 2^{32} + F_{\underline{M}} * 2^{16}}{2^{48}} + F_{\underline{L}} * F_{clk}$$
,

где:

F_{out} — синтезируемая частота,

F_{clk} — тактовая частота ЦАП,

 $F_H = Chx_dPhy_H$,

 $F_M = Chx_dPhy_M$,

 $F_L = Chx_dPhy_L.$

Значение аккумулятора фазы складывается с выходом генератора шума (если разрешено битом **pdith** регистра <u>ROUTE</u>) и значением в регистре <u>CHx_Py</u>, после чего подается на вход преобразователя фаза-амплитуда.

Выходное значения с преобразователя фаза-амплитуда умножается на значение в регистре CHx_Muly, затем к нему прибавляется значение CHx_Offsety.

Вычисленное значение передается в выходной маршрутизатор, где оно либо предварительно складывается с выходом другого канала, либо непосредственно передается соответствующий ЦАП, что определяется полем **sum** регистра <u>ROUTE</u>.

Перед подачей на ЦАП, рассчитанное значение амплитуды суммируется с выходом генератора амплитудного шума (если разрешено установкой бита **adith** регистра <u>ROUTE</u>). Также происходит ограничение разрядности с 12 до 10 бит.

Значения частоты, фазы, амплитуды и постоянного смещения записываются в соответствующие регистры CHx_dPhy_L , CHx_dPhy_M , CHx_dPhy_H , CHx_Py , CHx_Muly , $CHx_Offsety$ соответственно профиля y независимо для каждого канала x. Выбор рабочего профиля осуществляется записью его номера (0-63) в поля Pr_1 и Pr_2 регистра SEL_REG_{DR} для 1 и 2 канала соответственно.

3.2. Режим модуляции

Работа синтезатора в режиме модуляции аналогична работе в режиме гармонического синтеза.

Модуляция осуществляется путем переключения между двумя и более заранее запрограммированными профилям записью в регистр <u>SEL_REG</u>. Вид модуляции (FM, PM, AM, QAM и т.д.) определяется содержимым соответствующих профилей.

Также переключение активного профиля может осуществляться подачей кода с его номером на входы SEL при установленном бите SEL_IE регистра SYNC. Считывание состояния SEL происходит по положительному фронту внутренней тактовой частоты. Эту частоту можно вывести на вывод CSYNC, установив бит CSYNC_OE регистра SYNC в «1». Задержка управляющего воздействия от положительного фронта внутренней тактовой частоты до выхода ЦАП составляет 63 периода частоты дискретизации ЦАП.

Возможно программировать неактивный профиль «на лету», что дает практически неограниченный выбор типов и режимов модуляции.

Для уменьшения нежелательного расширения спектра синтезируемого сигнала при переключении профилей, имеется возможность «плавного» изменения параметров модуляции. Суть ее состоит в фильтрации параметров модуляции фильтром с импульсной характеристикой, близкой к гауссовой. Длина импульсной характеристики задается регистром $\underline{\text{CHx TSW}}$ независимо для каждого канала. При $\underline{\text{tsw}}>0$ интервал между последовательными переключениями параметров модуляции (профилей) должен составлять не менее $2^{\underline{\text{tsw}}+4}+8$ тактов ЦАП.

3.3. Режим синтеза ЛЧМ сигнала

Цикл формирования ЛЧМ сигнала содержит 4 стадии:

- **ñ** В стадии 1 происходит приращение частоты с шагом dF1 за такт;
- **ñ** В стадии 2 частота сигнала остается неизменной либо имеет нулевое значение (постоянная фаза);
- **ñ** В стадии 3 происходит приращение частоты с шагом dF2 за такт;
- **ñ** В стадии 4 частота сигнала остается неизменной либо имеет нулевое значение (постоянная фаза);

Значения dF1, dF2 задаются регистрами <u>CHx LS dFq1 L(M, H)</u>, <u>CHx LS dFq2L(M, H)</u> соответственно. Приращение частоты задается в дополнительном коде, т.е. может быть как положительным, так и отрицательным.

Длительность каждой стадии задается независимо регистрами <u>CHx_LS_TPH1</u> - <u>CHx_LS_TPH4</u> соответственно, с дискретностью 4 такта частоты дискретизации ЦАП. При тактовой частоте 1 ГГц, максимальная длительность каждой стадии составляет приблизительно 78 часов.

В стадиях 2 и 4 выходной сигнал может быть отключен установкой в «0» бит s2_on, s4_on регистра CHx_LS_CTR.

Запуск цикла формирования ЛЧМ сигнала производится записью «1» в биты LS1_start, LS2_start регистра CLR для соответствующих каналов.

В начале стадии 1 ЛЧМ, если установлен бит <u>CHx LS CTR.frq reset 1</u>, начальное значение частоты берется из регистра <u>CHx LS F1</u> соответствующего канала. В начале стадии 3 ЛЧМ, если установлен бит <u>CHx_LS CTR.frq reset_3</u>, начальное значение частоты берется из регистра <u>CHx_LS F2</u> соответствующего канала.

Если установлен бит auto регистра CHx_LS_CTR , по окончании стадии 4 снова начинается формирование стадии 1 в соответствующем канале.

Остановка формирования ЛЧМ производится записью «1» в биты LSx_stop регистра <u>CLR</u>. При этом происходит немедленный переход к 4 стадии, в которой синтезатор остается неограниченное время.

Также немедленный переход к началу стадии 1-4 ЛЧМ можно осуществить записью регистра <u>SEL_REG</u> либо аппаратно подачей положительного фронта на соответствующие выводы <u>SEL</u>.

3.3.1. Режим коррекции

Бит corr_enable регистра CHx_LS_CTR включает частотно-зависимую коррекцию фазы, амплитуды и постоянного смещения синтезируемого сигнала в режиме ЛЧМ. Старшие 16 бит нижней частоты корректируемого диапазона задаются регистром CHx_LS_CRFMIN. Поле CHx_LS_CTR.corr_fscale задает диапазон частот Δ F, в котором происходит коррекция:

$$\Delta F = 63/64 * F_{CLK}/2^{corr_fscale}$$

Параметры коррекции для частоты F_0 =CHx_LS_CRFMIN* $F_{CLK}/2^{16}$ берутся из профиля 0, для частоты F_0 + ΔF — из профиля 63. Параметры в остальных профилях соответствуют частотам F= F_0 + ΔF *n/64, где 05n563 — номер профиля.

Значения параметров сигнала, соответствующие промежуточным частотам, вычисляются методом линейной интерполяции.

При отключенной коррекции, параметры фазы, амплитуды и постоянного смещения синтезируемого сигнала берутся из профиля с номерами 1, 2, 3, 0 для стадий 1-4 соответственно.

4. ВЫВОДЫ БИС

4.1. Назначение выводов

Таблица 1. Назначение выводов БИС

Наименование Тип		Описание		
Сигналы компарато	ра		•	
CMP_INP	AI	Вход СМР положительный	1	
CMP_INM	AI	Вход СМР отрицательный		
CMP_OP	0	Выход СМР положительный	1	
CMP_OM	0	Выход СМР отрицательный	1	
Тактовые сигналы		•		
CLKP	CI	Вход тактовой частоты положительный	1	
CLKM	CI	Вход тактовой частоты отрицательный	1	
CLKDP	CI	Альтернативный вход тактовой частоты положительный	1	
CLKDM	CI	Альтернативный вход тактовой частоты отрицательный	1	
Сигналы последова	тельного порт	а управления (SPI-интерфейс)		
SDI	I	Вход данных последовательного порта управления	1	
SDO	О	Выход данных последовательного порта управления	1	
SCK	I	Тактовый сигнал сопровождения последовательных данных.	1	
SCSn	I	«Выбор кристалла» последовательного порта управления	1	
SSCSn	0	Сигнал SCSn, пересинхронизированный сигналом CSYNC	1	
Сигналы параллель	ного порта у п			
WRn	I	Строб разрешения записи по параллельному порту	1	
RDn	I	Строб разрешения чтения по параллельному порту	1	
CSn	I	Сигнал выбора кристалла	1	
ADR	I	Шина адреса параллельного порта	1	
DATA	IO	Шина данных параллельного порта	16	
Прочие сигналы	10	птина данных наразнельного порта	10	
IREF1	AI	Опорный ток ЦАП1	1	
IREF2	AI	Опорный ток ЦАП2	1	
OUTP1	AO	Выход ЦАП1 положительный	1	
OUTM1	AO	Выход ЦАП1 отрицательный	1	
OUTP2	AO	Выход ЦАП1 огрицательный	1	
OUTM2	AO	Выход ЦАП2 отрицательный	1	
RSTn	I	Сигнал аппаратного сброса	1	
CSYNC	IO	В режиме «ведущий» - выход тактовой частоты ЦАП,	1	
CSTNC	10	деленной на 4.	1	
		В режиме «ведомый» - вход синхронизации.		
CSEL	I	Выбор источника тактовой частоты.	1	
SEL1	IO	Выбор профиля синтеза для 1 канала, LINK-порт,	6	
SELI		статус/управление ЛЧМ	0	
SEL2	IO	Выбор профиля синтеза для 2 канала, статус/управление	6	
SELZ	10	ЛЧМ	0	
Питание		JI IIVI		
DVDD	PWR	Питание 1.8 В («тихие» цифровые блоки)	2	
CVDD	PWR	Питание 1.8 В (цифровое ядро)	7	
PVDD	PWR	Питание 1.8 В (цифровое ядро) Питание 3.3 В (периферия)	3	
AVDD		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3	
	PWR PWR	Питание 3.3 В (аналоговые блоки)	2	
AVDD2		Питание 3.3 В (ЦАП1)	2	
AVDD2	PWR	Питание 3.3 В (ЦАП2)		
DVDD1	PWR	Питание 1.8 В (ЦАП1)	1	
DVDD2	PWR	Питание 1.8 В (ЦАП2)	1	
CMP_VDD	PWR	Питание 3.3 В (компаратор)	1	
CMP_GND	PWR	Земля (компаратор)	2	
AGND	PWR	Земля (аналоговые и «тихие» цифровые блоки)	11	

Наименование	Тип	Описание	кол-
			во
PGND	PWR	Земля (периферия)	3
CGND	PWR	Земля (цифровое ядро)	8
Итого:			100

4.2. Расположение выводов

Таблица 2.Расположение выводов

№	Наименование	№	Наименование	№	Наименование	№	Наименование
1	CVDD	26	AVDD	51	CMP_VDD	76	RDn
2	SCK	27	AVDD	52	CMP_OP	77	WRn
3	SDI	28	IREF2	53	CMP_OM	78	DATA[0]
4	CGND	29	AGND	54	CMP_GND	79	DATA[1]
5	SDO	30	AVDD2	55	CGND	80	DATA[2]
6	SCSn	31	AVDD2	56	SEL2[0]	81	DATA[3]
7	SSCSn	32	AGND	57	SEL2[1]	82	CVDD
8	CSn	33	OUTM2	58	SEL2[2]	83	DATA[4]
9	PVDD	34	OUTP2	59	SEL2[3]	84	DATA[5]
10	RSTn	35	AGND	60	CVDD	85	CGND
11	ADR	36	DVDD2	61	CVDD	86	CGND
12	PGND	37	IREF1	62	SEL2[4]	87	DATA[6]
13	CSEL	38	AGND	63	SEL2[5]	88	DATA[7]
14	CVDD	39	AVDD1	64	CGND	89	DATA[8]
15	CVDD	40	AVDD1	65	CGND	90	DATA[9]
16	DVDD	41	AGND	66	PGND	91	PGND
17	AGND	42	OUTM1	67	SEL1[0]	92	DATA[10]
18	CLKDP	43	OUTP1	68	SEL1[1]	93	DATA[11]
19	CLKDM	44	AGND	69	PVDD	94	PVDD
20	AGND	45	DVDD1	70	SEL1[2]	95	DATA[12]
21	AVDD	46	AGND	71	SEL1[3]	96	DATA[13]
22	AGND	47	DVDD	72	CGND	97	DATA[14]
23	CLKM	48	CMP_GND	73	SEL1[4]	98	DATA[15]
24	CLKP	49	CMP_INM	74	SEL1[5]	99	CGND
25	AGND	50	CMP_INP	75	CVDD	100	CSYNC

4.3. Назначение выводов SEL в различных режимах

Таблица 3. Назначение выводов SEL в различных режимах

Состояни	е управляющего	бита		Режим работы
LINK.on	CH1_LS_CTR. LS_on	CH2_LS_CTR. LS_on	SYNC.SEL_IE	
0	0	0	1	SEL1, SEL2 выбирают активный профиль в каналах 1 и 2 соответственно.
0	0	1	1	SEL1 выбирает активный профиль канала 1, SEL2[3:0] управляют запуском стадий ЛЧМ в канале 2.
0	1	0	1	SEL2 выбирает активный профиль канала 2, SEL1[3:0] управляют запуском стадий ЛЧМ в канале 1.
0	1	1	1	SEL1[3:0] и SEL2[3:0] управляют запуском стадий ЛЧМ в каналах 1 и 2 соответственно
1	0	0	X	SEL1[3:0] – данные LINK-порта (LDAT), SEL1[4] – LCLK, SEL1[5] – LACK.
1	0	1	1	SEL1[3:0] — данные LINK-порта (LDAT), SEL1[4] — LCLK, SEL1[5] — LACK, SEL2[3:0] управляют запуском стадий ЛЧМ в канале 2.

5. ВНУТРЕННЕЕ АДРЕСНОЕ ПРОСТРАНСТВО.

Внутреннее адресное пространство содержит управляющие и статусные 16 разрядные регистры. Доступ во внутреннее адресное пространство возможен либо через параллельный порт, либо через последовательный порт управления.

5.1. Адресное пространство регистров управления DDS.

Таблица 4. Адресное пространство регистров управления DDS.

Адрес	Сброс	Тип	Имя	Назначение
0000	0000	\mathbf{W}^{1}	SWRST	Регистр программного сброса
0001	0201	R^2	DEVID	Идентификатор устройства, только чтение
0002	0000	RW^3	SEL REG	Выбор активного профиля синтеза
0003	0003	RW	CTR	Регистр управления
0004	4800	RW	SYNC	Управление синхронизацией
0005	0000	W	CLR	Очистка аккумуляторов фазы, запуск и остановка ЛЧМ
0006	0000	RW	<u>LINK</u>	Управление LINK-интерфейсом
0007	0000	RW	ROUTE	Управление потоком данных и рандомизацией
0008	XXXX	RW	TC L	Делитель чиповой скорости, биты [15:0]
0009	XXXX	RW	TC H	Делитель чиповой скорости, биты [31:16]
00E0	0000	W	T_CAPTURE	Отладочный регистр: фиксация текущего состояния каналов
				для последующего считывания.
00E1	XXXX	R	T_SEL_STATE	Отладочный регистр: текущее состояние выводов SEL
00E2	XXXX	R	T_E_SEL	Отладочный регистр: эффективный SEL
1000:	XXXX		CH1_*	Регистры первого канала
14F3				
1000	0000	RW	CH1 LS CTR	Управление синтезом ЛЧМ.
1001	0000	RW	CH1 LS CRFMIN	Нижняя граница корректируемого диапазона частот
1002	0000	RW	CH1 TSW	Управление временем переключения параметров синтеза.
1010	XXXX	RW	CH1 LS TPH1 L	Регистр длительности 1-ой фазы ЛЧМ-сигнала [15:0]
1011	XXXX	RW	CH1_LS_TPH1_M	Регистр длительности 1-ой фазы ЛЧМ-сигнала [31:16]
1012	XXXX	RW	CH1_LS_TPH1_H	Регистр длительности 1-ой фазы ЛЧМ-сигнала [45:32]
1014:	XXXX	RW	CH1 LS TPH2 L(Регистры длительности 2-ой фазы ЛЧМ-сигнала
1016			<u>M, H)</u>	(аналогично регистрам длительности 1 фазы ЛЧМ-сигнала)
1018:	XXXX	RW	CH1_LS_TPH3_L(Регистры длительности 3-й фазы ЛЧМ-сигнала
101A			<u>M, H)</u>	(аналогично регистру длительности 1 фазы ЛЧМ-сигнала)
101C:	XXXX	RW	CH1_LS_TPH4_L(Регистры длительности 4-й фазы ЛЧМ-сигнала
101E			<u>M, H)</u>	(аналогично регистру длительности 1 фазы ЛЧМ-сигнала)
1020	XXXX		CH1 LS F1 L	Регистр начальной частоты ЛЧМ 1 [15:0]
1021	XXXX		CH1 LS F1 M	Регистр начальной частоты ЛЧМ 1 [31:16]
1022	XXXX		CH1 LS F1 H	Регистр начальной частоты ЛЧМ 1 [47:32]
1024	XXXX		CH1 LS F2 L	Регистр начальной частоты ЛЧМ 2 [15:0]
1025	XXXX		CH1 LS F2 M	Регистр начальной частоты ЛЧМ 2 [31:16]
1026	XXXX		CH1 LS F2 H	Регистр начальной частоты ЛЧМ 2 [47:32]
1030	XXXX		CH1 LS Ph1	Регистр начальной фазы ЛЧМ 1
1031	XXXX		CH1 LS Ph2	Регистр начальной фазы ЛЧМ 2
1040	XXXX		CH1 LS dF1 L	Регистр приращения частоты 1 [15:0]
1041	XXXX		CH1_LS dF1_M	Регистр приращения частоты 1 [31:16]
1042	XXXX		CH1_LS dF1_H	Регистр приращения частоты 1 [47:32]
1044:	XXXX	RW	CH1_LS_dF2_L	Регистры приращения частоты 2
1046	0007		(M,H)	(аналогично регистрам приращения частоты 1)
1300	0000	W	CH1 dPh all L	Запись приращения фазы [15:0] во все профили
1301	0000	W	CH1 dPh all M	Запись приращения фазы [31:16] во все профили

¹ W — регистр только для записи. При чтении возвращается 0.

² R — регистр только для чтения. Запись игнорируется.

³ RW — регистр можно писать и читать

Адрес	Сброс	Тип	Имя	Назначение
1302	0000	W	CH1_dPh_all_H	Запись приращения фазы [47:32] во все профили
1304	0000	W	CH1_P_all	Запись смещения фазы во все профили
1305	0000	W	CH1_Mul_all	Запись коэффициента усиления во все профили
1306	0000	W	CH1_Offset_all	Запись постоянного смещения во все профили
1400	XXXX	RW	CH1_dPh0_L	Регистр приращения фазы [15:0], профиль 0
1401	XXXX	RW	CH1_dPh0_M	Регистр приращения фазы [31:16], профиль 0
1402	XXXX	RW	CH1_dPh0_H	Регистр приращения фазы [47:32], профиль 0
1404	XXXX	RW	<u>CH1_P0</u>	Регистр управления фазой, профиль 0
1405	XXXX	RW	CH1_Mul0	Регистр управления амплитудой, профиль 0
1406	XXXX	RW	CH1_Offset0	Регистр упр. смещением выходного сигнала, профиль 0
1410:	XXXX	RW	CH1_dPy_L(M,H)	Параметры профилей 1-63
17F6			CH1_Py	
			CH1 Muly	
			CH1 Offsety	
1800:1				Отладочные регистры первого канала
8FF				
1800		R	CH1_T_dPh_L	Приращение фазы [15:0]
1801	XXXX	R	CH1_T_dPh_M	Приращение фазы [31:16]
1802		R	CH1_T_dPh_H	Приращение фазы [47:32]
1804		R	CH1_T_P	Смещение фазы
1805		R	CH1_T_Mul	Коэффициент умножения
1806		R	CH1_T_Offset	Постоянное смещение
1808	XXXX	R	CH1_T_SEL	Номер активного профиля
1810	XXXX	R	CH1_T_out1	Выход 1 подканала
1811	XXXX	R	CH1_T_out2	Выход 2 подканала
1812		R	CH1_T_out3	Выход 3 подканала
1813	XXXX	R	CH1_T_out4	Выход 4 подканала
2000:	XXXX		CH2_*	Регистры второго канала
2813				(аналогично первому каналу)

Зарезервированные поля и регистры читаются нулями. Запись в них игнорируется.

5.2. SWRST

Запись в регистр числа 007816 вызывает программный сброс, полностью аналогичный аппаратному. При чтении возвращается '0'

5.3. DEVID

Регистр 16-бит идентификатора типа устройства. Доступен только по чтению.

5.4. SEL_REG

Выбор текущего профиля синтеза.

Бит	Имя поля	Назначение			
[15:14]	LS2_stage	Запись: запуск соответствующей стадии ЛЧМ во 2 канале;			
		Чтение: текущая стадия ЛЧМ во 2 канале			
[13:6]	Pr_2	Режим не-ЛЧМ, чтение, запись:			
		Текущий профиль синтеза во 2 канале;			
[7:6]	LS1_stage	Запись: запуск соответствующей стадии ЛЧМ в 1 канале;			
		Чтение: текущая стадия ЛЧМ в 1 канале			
[5:0]	Pr_1	Режим не-ЛЧМ, чтение, запись:			
		Текущий профиль синтеза в 1 канале			

5.5. CTR

Общее управление режимами работы микросхемы.

Бит	Имя поля	Назначение			
15	res	Зарезервировано			
14	CMP_on	1: включение компаратора			
13	DAC2_on	1: вкл. ЦАП 2			
12	DAC1_on	1: вкл. ЦАП 1			
[11:5]	res	Зарезервировано			
[4:0]	cmx	Коэффициент деления тактового сигнала. При CSEL=0, коэффициент деления со входов CLKP, CLKM: 0: 1:1; 1: 1:2; 3: 1:4. При CSEL=1, коэффициент деления частоты со входов CLKDP, CLKDM равен 1.			

5.6. SYNC

Управление режимами синхронизации.

Бит	Имя поля	Назначение		
15	res	Зарезервировано		
14	CSYNC_OE	Разрешение выдачи на CSYNC частоты дискретизации, деленной на 4 (8)		
13	CSYNC_IE	Разрешение использования входного сигнала CSYNC для синхронизации		
12	res	Зарезервировано		
11	CSYNC_DIV	Разрешение дополнительного деления частоты CSYNC на 2 перед выдачей на CSYNC (т.е. в итоге частота дискретизации делится на 8).		
10	SPI_master	1: разрешение выхода SSCSn		
9	SYNC_del	1: дополнительная задержка входного сигнала CSYNC на 0.5 нс. Для случаев, когда не соблюдается t_{sucsc}		
8	SEL_IE	В не-ЛЧМ режиме: 0: активный профиль выбирается записью в регистр SEL_REG; 1: активный профиль выбирается аппаратно сигналами SEL. В режиме ЛЧМ: 1: положительный фронт на входах SEL[0] – SEL[3] запускает стадию 1-4 ЛЧМ соответственно.		

Бит	Имя поля	Назначение
7	SEL_OE	1: сигналы SEL являются выходными в не-ЛЧМ режиме при отключенном
		LINK-интерфейсе и индицируют номер активного профиля.
		В режиме ЛЧМ, SEL[5:4] являются выходными и индицируют текущую
		стадию ЛЧМ.
[6:5]	SYNC_Phase	Фаза синхронизации. Задержка тактовой частоты вычислительного ядра
		относительно входного сигнала CSYNC, в тактах частоты дискретизации
		ЦАП.
[4:3]	SYNC_Out_Phase	Задержка выходного сигнала CSYNC, тактов ЦАП.
[2:0]	res	Зарезервировано

5.7. CLR

Управление очисткой аккумуляторов фазы и запуск/остановка ЛЧМ.

Бит	Имя поля	Назначение
11	bist_clr	Очистка регистров самотестирования
10	link_clr	Очистка очередей данных LINK-интерфейса
	link_start	Сброс Тс и запуск приема данных с LINK-порта для режима внутренней
9		синхронизации
8	link_stop	Остановка приема данных с LINK-порта для режима внутренней синхронизации
7	LS2_stop	Остановка (переход к стадии 4) ЛЧМ последовательности во 2 канале
6	LS1_stop	Остановка (переход к стадии 4) ЛЧМ последовательности в 1 канале
5	LS2_start	Запуск (переход к стадии 1) ЛЧМ последовательности во 2-ом канале
4	LS1_start	Запуск (переход к стадии 1) ЛЧМ последовательности в 1-ом канале
3	Clr_fq2	Установка аккумулятора частоты 2-канала в значение CH2_LS_F1
2	Clr_fq1	Установка аккумулятора частоты 1-канала в значение CH1_LS_F1
1	Clr_ph2	Очистка аккумулятора фазы 2-канала
0	Clr_ph1	Очистка аккумулятора фазы 1-канала

5.8. LINK

Управление LINK-интерфейсом.

Бит	Имя поля	Назначение
[15:5]	res	Зарезервировано
[4:3]	clk_mode	Режим тактирования.
		0: длительность символа равна 4*T _{clk} *(TC_H*2 ¹⁶ +TC_L);
		1: длительность символа равна 4*T _{clk} *2 ³² /(TC_H*2 ¹⁶ +TC_L);
		3: внешняя синхронизация. Переключение профилей происходит по
		положительному фронту на SEL2[0];
		Т _{сlk} — период тактовой частоты ЦАП
[2:1]	res	Зарезервировано
0	on	1 – включение LINK-интерфейса. В этом режиме линии SEL1 используются под
		LINK порт.
		В режиме LINK.on=1, регистры с адресами >=0x1000 недоступны на запись.

5.9. ROUTE

Управление маршрутизацией сигнала к ЦАП и амплитудным выбеляющим шумом.

Бит	Имя поля	Назначение
7	pdith2	1 = вкл. рандомизации фазы 2 канала.
6	pdith1	1 = вкл. рандомизации фазы 1 канала.
[5:4]	adith1	0: рандомизация амплитуды перед ограничением разрядности в 1 канале
		выключена;
		1: амплитуда шума ½*LSB ЦАП;
		2: зарезервировано;
		3: амплитуда шума 8*LSB ЦАП.
[3:2]	adith2	То же для канала 2. При этом в режиме adith1=adith2=3 гарантируется, что
		мгновенные значения выбеляющего шума для двух каналов равны по модулю и
		противоположны по знаку, т.е. их сумма равна нулю.
[1:0]	sum	Маршрутизация данных от каналов синтеза к ЦАП.
		0: сигнал каждого канала поступает на «свой» ЦАП
		1: сигнал 1 канала подается на оба ЦАПа.
		2: сигнал 2 канала подается на оба ЦАПа.
		3: сигналы каналов суммируются перед ограничением разрядности и подаются
		на оба ЦАПа.
		Режим суммирования позволяет при параллельном соединении выходов ЦАП
		увеличить эффективную разрядность на 1 бит, а добавление при этом
		противофазного шума (adith1=adith2=3) позволяет снизить влияние глитчей и
		дифференциальной нелинейности ЦАП.

5.10. CH*x*_TSW

Длина импульсной характеристики гауссового фильтра, канал х.

Бит	Имя поля	Назначение
[15:3]	res	Зарезервировано
		tsw=0: Фильтрация отключена;
[2:0]	tsw	tsw>0: 2 ^{tsw+4} - время переключения (длина импульсной характеристики
		фильтра) в тактах ЦАП.

5.11. CH*x*_dPhy_L

Приращение фазы, канал х, профиль у, младшие 16 разрядов

Бит	Имя поля	Назначение
[15:0]	value	Приращение фазы, разряды [15:0], канал х, профиль у

5.12. CHx_dPhy_M

Приращение фазы, канал x, профиль y, разряды [31:16]

Бит	Имя поля	Назначение
[15:0]	value	Приращение фазы, разряды [31:16], канал х, профиль у

5.13. CH*x*_dPhy_H

Приращение фазы, канал х, профиль у, старшие 16 разрядов

Бит	Имя поля	Назначение
[15:0]	value	Приращение фазы, разряды [47:32], канал х, профиль у

5.14. CHx_Py

Установка сдвига фазы в профиле у канала x.

Бит	Имя поля	Назначение
[15:0]		Смещение фазы синтезируемого сигнала (Φ). value — двоично-дополнительное целое. $\Phi = \pi^* \text{value}/2^{15}$

5.15. CH*x*_Muly

Установка амплитуды выходного сигнала в профиле у канала x.

Бит	Имя поля	Назначение
[15:3]	mul	Амплитуда синтезируемого сигнала (A). $A=mul/2^{12}$, $mul-$ двоично-
		дополнительное целое
[2:0]	res	Зарезервировано

5.16. CHx_Offsety

Постоянное смещение синтезируемого сигнала в профиле y канала x.

Бит	Имя поля	Назначение
[15:4]	offset	Постоянное смещение. Двоично-дополнительное целое.
[3:0]	res	Зарезервировано

5.17. CHx_dPh_all_L

Запись 16 младших разрядов приращения фазы во все профили канала x. При чтении возвращается значение 0.

P	- v - F v - v - v - v - v - v - v - v - v		
Бит	Имя поля	Назначение	
[15:0]	value	Приращение фазы, разряды [15:0], канал х, все профили.	

5.18. CHx_dPh_all_M

Запись разрядов [31:16] приращения фазы во все профили канала x. При чтении возвращается значение 0.

Бит	Имя поля	Назначение
[15:0]	value	Приращение фазы, разряды [31:16], канал х, все профили.

5.19. CHx_dPh_all_H

Запись 16 старших разрядов приращения фазы во все профили канала x. При чтении возвращается значение 0.

Бит	Имя поля	Назначение
[15:0]	value	Приращение фазы, разряды [47:32], канал х, все профили.

5.20. CHx_P_all

Запись сдвига фазы во все профили канала х. При чтении возвращается значение 0.

Бит	Имя поля	Назначение
[15:0]	Waliie	Смещение фазы синтезируемого сигнала. value — двоично-дополнительное целое. $\Phi = \pi^* \text{value}/2^{15}$

5.21. CHx_Mul_all

Запись амплитуды выходного сигнала во все профили канала x. При чтении возвращается значение 0.

Бит	Имя поля	Назначение
[15:3]	mul	Амплитуда синтезируемого сигнала. $A=mul/2^{12}$, $mul-$ двоично-дополнительное
		целое
[2:0]	res	Зарезервировано

5.22. CHx_Offset_all

Запись постоянного смещения синтезируемого сигнала во все профили канала x. При чтении возвращается значение 0.

Бит	Имя поля	Назначение
15:4]	offset	Постоянное смещение. Двоично-дополнительное целое.
[3:0]	res	Зарезервировано

5.23. CH*x*_LS_CTR

Бит	Имя поля	Назначение
15	LS_on	1: включение режима ЛЧМ.
14	PA_bypass	1: отключение преобразования фаза/амплитуда
13	frq_reset_3	"1": установка частоты в начале стадии 3 в значение CHx_LS_F2.
12	frq_reset_1	"1": установка частоты в начале стадии 1 в значение CHx_LS_F1.
11	ph_reset_3	Сброс фазы в CHx_LS_Ph2 в начале стадии 3.
10	ph_reset_1	Сброс фазы в CHx_LS_Ph1 в начале стадии 1.
9	s2_on	"0" выключение сигнала во 2-ой стадии.
8	s4_on	"0" выключение сигнала в 4-ой стадии.
7	corr_enable	"1": в ЛЧМ режиме включение кусочно-линейной коррекции сигнала.
6	s2_f0	1: нулевое приращение фазы в стадии 2
5	s4_f0	1: нулевое приращение фазы в стадии 4
	auto	Автоповтор ЛЧМ последовательности (переход к стадии 1 по окончании стадии
4		4).
[3:0]	corr_fscale	Масштаб диапазона коррекции сигнала. См. 3.3.1.

5.24. CHx_LS_CRFMIN

Нижняя граница корректируемого диапазона частот

Бит	Имя поля	Назначение
[15:0]	value	Установка нижней границы корректируемого диапазона частот, старшие 16 бит.

5.25. CHx_LS_F1(2)_L(M, H)

Регистры начальной частоты для стадий 1, 3 ЛЧМ.

- · · · · · · · · · · · · · · · · · · ·		
Бит	Имя поля	Назначение
[15:0]	value	Значение частоты, разряды [15:0] ([31:16], [47:32])

5.26. CHx_LS_Ph1(2)

Регистры начальной фазы для стадий 1, 3 ЛЧМ.

Бит	Имя поля	Назначение
[15:0]	value	Значение фазы. value – двоично-дополнительное целое. $\Phi = \pi^* \text{value}/2^{15}$

5.27. CHx_LS_dFy_L

Регистры у канала х приращения частоты для режима ЛЧМ.

Бит	Имя поля	Назначение
[15:0]	value	Приращение частоты, разряды [15:0]

$5.28. CHx_LS_dFy_M$

Регистры у канала х приращения частоты для режима ЛЧМ.

Бит	Имя поля	Назначение
[15:0]	value	Приращение частоты, разряды [31:16]

5.29. CHx_LS_dFy_H

Регистры у канала х приращения частоты для режима ЛЧМ.

	,	$f 1 \ \ $
Бит	Имя поля	Назначение
[15:0]	value	Приращение частоты, разряды [47:32]

5.30. CH*x*_LS_TPH1_L(M, H)

Длительность 1-ой стадии ЛЧМ

Бит	Имя поля	Назначение
[15:0]	value	Длительность 1-ой стадии ЛЧМ, Tclk*4. Разряды [15:0] ([31:16], [45:32])

5.31. CH*x*_LS_TPH2_L(M, H)

Длительность 2-ой стадии ЛЧМ

Бит	Имя поля	Назначение
[15:0]	value	Длительность 2-ой стадии ЛЧМ, Tclk*4. Разряды [15:0] ([31:16], [45:32])

5.32. CH*x*_LS_TPH3_L(M, H)

Длительность 3-й стадии ЛЧМ

<u> </u>		1
Бит	Имя поля	Назначение
[15:0]	value	Длительность 3-ой стадии ЛЧМ, Tclk*4. Разряды [15:0] ([31:16], [45:32])

$5.33. CHx_LS_TPH4_L(M, H)$

Длительность 4-й стадии ЛЧМ

r i e e e e e e e e e e e e e e e e e e							
Бит	Имя поля	Назначение					
[15:0]	value	Длительность 4-ой стадии ЛЧМ, Tclk*4. Разряды [15:0] ([31:16], [45:32])					

6. ОПИСАНИЕ ИНТЕРФЕЙСОВ

6.1. Параллельный порт управления DDS.

Параллельный интерфейс служит для чтения и записи 16-битных регистров управления ЦВС.

Обмен данными контролируются сигналами выборка кристалла CSn, строб чтения RDn и строб записи WRn.

При использовании параллельного порта на входе SCSn должен присутствовать высокий уровень.

Сигналы CSn, RDn, WRn имеют низкий активный уровень.

Сигал ADR выбирает доступ к адресному регистру (ADR=0), либо к данным (ADR=1).

Передача информации происходит по двунаправленной 16-разрядной шине DATA. Направление передачи определяется сигналом RDn. Низкий уровень разрешает выдачу данных из микросхемы.

Для осуществления доступа к регистру микросхемы, необходимо вначале в адресный регистр записать адрес, по которому будет осуществляться доступ (ADR=0), затем при ADR=1 произвести операцию чтения или записи данных.

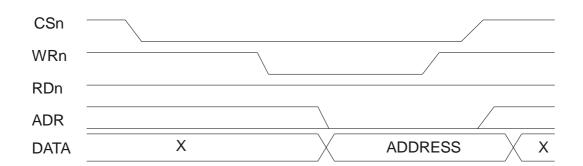


Рисунок 6.1. Запись адреса в адресный регистр

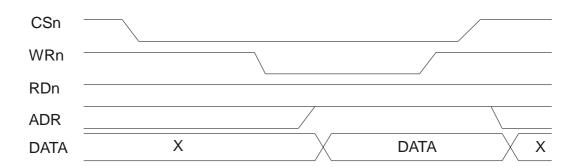


Рисунок 6.2. Запись данных

6.2. Линк-порт

Линк-порт предназначен для осуществления модуляции путем переключения заранее запрограммированных профилей. Линк-порт совместим с 4-разрядным линк-портом ИС SHARC. Управление линк-портом осуществляется с помощью регистра <u>LINK</u>.

Для включения ЛИНК-порта необходимо записать «1» в поле «on» регистра LINK. В этом режиме линии SEL1 получают следующее назначение:

SEL1[3:0]: LDAT (входные данные линк-порта, вход);

SEL1[4]: LCLK (тактовый сигнал, вход);

SEL1[5]: LACK (сигнал подтверждения, выход)

Временные диаграммы работы показаны на рисунке .6.1.

В режиме линк-порта (LINK.on=1), регистры с адресами >=0x1000 недоступны на запись.

6.2.1. Формат данных:

Информационной единицей (символом) является байт (8 бит). Поскольку разрядность физического равна 4 бит, передача одного символа занимает 2 такта LCLK.

Данные передаются старшим значащим полубайтом вперед по фронту сигнала LCLK.

Младшие 6 бит определяют индекс (0-63) профиля формирования сигнала, биты 6 и 7 означают, к какому каналу относятся данные, соответственно 1 и 2. Если установлены оба бита, выбирается заданный профиль одновременно в обоих каналах. Если оба бита сброшены, данные игнорируются без ожидания символьной синхронизации.

Допускается произвольное чередование данных для обоих каналов, однако в любой момент разность количества символов для обоих каналов не должна превышать 16.

Данные передаются блоками по 4 байта. Передача начинается, если сигнал LACK установлен и есть данные для передачи. Если при передаче первого полубайта очередного блока сигнал LACK не установлен, то передача приостанавливается, с сохранением LCLK в 1. После перехода сигнала LACK в 1 передача возобновляется. При отсутствии данных для передачи сигнал LCLK удерживается в 0.

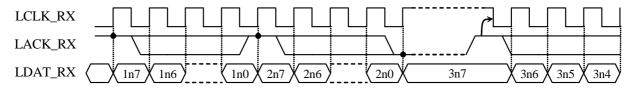


Рисунок 6.3. Временная диаграмма работы LINK-интерфейса.

6.2.2. Управление скоростью

Скорость приема данных может задаваться либо программированием внутреннего счетчик-делителя, либо подачей внешнего тактового сигнала. Выбор режима осуществляется записью в поле «clk_mode» регистра LINK, а скорость модуляции в режиме внутренней синхронизации задается регистрами TC_H, TC_L.

При LINK.LINK_clk_mode=3 переключение профилей происходит по положительному фронту сигнала синхронизации SEL2[0].

При значениях LINK.LINK_clk_mode, равных 0 или 1, частота синхронизации образуется делением внутренней тактовой частоты.

Для задания режима внутренней синхронизации, в поле clk_mode регистра LINK необходимо записать значение 0 (режим деления) или 1 (режим умножения). В первом случае, период следования символов будет составлять $T_{CLK}*4*(TC_H*65536+TC_L)$, во втором – $T_{CLK}*4*2^{32}/(TC_H*65536+TC_L)$.

Здесь T_{CLK} -частота дискретизации ЦАП.

Следует выбирать режим внутренней синхронизации, обеспечивающий меньшее отклонение скорости модуляции от номинальной.

6.3. Последовательный порт управления DDS.

Для управления DDS используется последовательный порт совместимый с интерфейсом SPI. Обращение к регистрам внутреннего адресного пространства осуществляется с помощью 24-битовых команд, подаваемых на вход SDI.

Порт выглядит извне как сдвиговый регистр длиной 24 бита. Входом регистра является SDI, выходом – SDO. Информация в сдвиговый регистр записывается по положительному фронту SCSn. Выполнение команды начинается по положительному фронту SCSn.

Таким образом, значащими информационными являются последние 24 бита, принятые со входа SDI.

Описанная логика работы дает возможность последовательного соединения неограниченного количества микросхем с возможностью синхронного выполнения команд.

При выполнении команды, данные в сдвиговом регистре модифицируется в соответствии с таблицей 6.1.

Длина команды составляет 24 бита. Первые 8 бит содержат код команды, остальные 16 — параметры.

Считывание данных с линии SDI осуществляется по фронту сигнала SCLK. Установка данных на выходе SDO - по спаду сигнала SCLK. Входные и выходные данные передаются старшим значащим битом вперед.

При использовании последовательного порта, на входах CSn, RDn, WRn должен присутствовать высокий уровень.

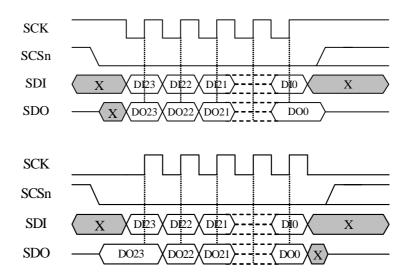


Рисунок 6.4. Временная диаграмма работы последовательного порта

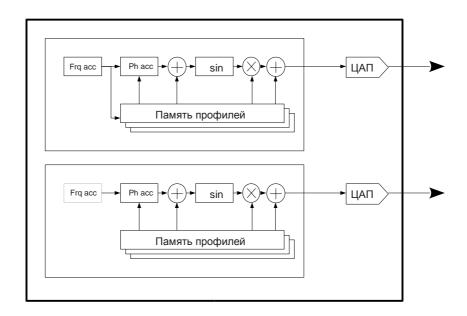
Таблица 5. Команды последовательного интерфейса.

Команда	Код	Параметр	Новое	Назначение
			значение	
			сдвигового	
			регистра	
NOP	00000000	data	DEVID	Нет операции. Значение data игнорируется.
			(201_{16})	
SETA	00010000	addr	регистр	Запись addr в адресный регистр.
			адреса	
WR	00100000	data	регистр	Запись data в регистр по адресу в адресном регистре
			адреса	
WRI	00110000	data	регистр	Запись data в регистр по адресу в адресном регистре с
			адреса	последующей инкрементацией адресного регистра
SETAFT	10110000	addr	прочитанные	Запись addr в адресный регистр с выборкой значения
			данные	регистра по адресу addr в сдвиговый регистр.

6.4. Цифро-аналоговый преобразователь

Синтезатор оснащен двумя 10-разрядными ЦАП с дифференциальным токовым выходом. Каждый ЦАП может быть независимо переведен в режим низкого потребления установкой бита CTR.DACx on в «0».

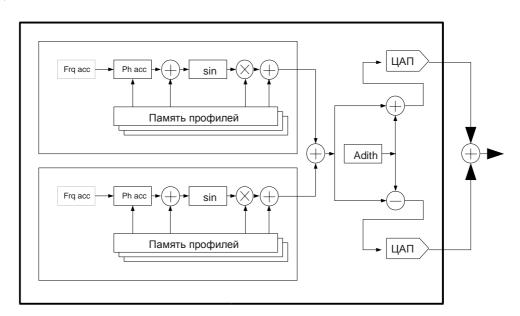
Ток полной шкалы ЦАП задается резистором R_{REF} , включенным между выводом IREF и общим проводом, или источником тока, подключенным к IREF. Коэффициент масштабирования тока равен 128. Т.е. для получения номинального тока полной шкалы 10 мA, значение тока IREF должно составлять 78.13 мкA.


Напряжение на выводе IREF равно 541 ± 7 мВ, таким образом, ток полной шкалы I_{FS} связан с резистором R_{REF} соотношением: I_{FS} =69.25B/ R_{REF} .

Напряжение на выходах ЦАП OUTP, OUTM должно находиться в пределах ± 0.6 В относительно «земли».

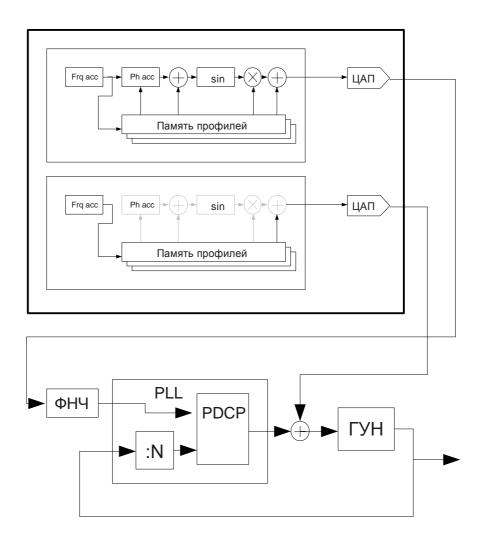
7. ТИПОВЫЕ СХЕМЫ ВКЛЮЧЕНИЯ

7.1. Двухканальный режим


Каждый канал ЦВС конфигурируется и используется независимо. Например, канал 1 может быть использован для формирования ЛЧМ сигнала, в то время как канал 2 формирует модулированный сигнал для передающего тракта цифровой системы связи. Частным случаем двухканального режима является квадратурный. В последнем случае настройки каналов различаются только начальной фазой синтезируемого сигнала.

7.2. Одноканальный режим

В одноканальном режиме, выходные сигналы с обоих каналов суммируются и подаются на оба ЦАПа. Возможные области применения данного режима:


- **ñ** Формирование двух каналов передачи данных;
- ñ Синтез QAM c GMSK;
- **ñ** Расширение динамического диапазона за счет параллельного включения двух ЦАПов.

7.3. Режим ЛЧМ с умножением частоты

В этом режиме ЦВС 1508ПЛ8Т используется совместно с целочисленным ФАПЧ для формирования ЛЧМ сигнала с девиацией в несколько гигагерц при сохранении высокой скорости и линейности изменения частоты.

Один канал используется в качестве источника опорной частоты для ФАПЧ, в то время как второй формирует управляющее напряжение для быстрой перестройки ГУН.

8. ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 6. Электрические характеристики (AVDD=1.8B, VDD=1.8B, DVDD=3.3B, T=-60..+85°C)

Параметр	Обозначен ие	Мин.	Тип.	Макс.	Размерн ость
Тактовая частота:	f				МГц
максимальная	c	1000	1100	_	ТИТ Ц
минимальная		-	-	0	
Входной уровень	P	-10		5	дБм
Входной импеданс	Rcin	20			кОм
Входная емкость	Ccin			12	пФ
ЦАП		•		•	•
Разрешение	N		10		бит
Дифференциальная нелинейность	DNL		0.2	1	LSB
Интегральная нелинейность	INL		0.6	1.5	LSB
Максимальная частота преобразования	Fs	1000			МΓц
Дифференциальный токовый выход	Iodacfs	5		20	мА
Диапазон выходных напряжений	Uodac	-0.6		0.6	В
Динамический диапазон, свободный от паразитных составляющих, в широкой полосе (0 – 500МГц), f =1000 МГц, — Fo=26 МГц — Fo=126 МГц — Fo=284 МГц	SFDRW	52	67 63 56		дБ дБ
Динамический диапазон, свободный от паразитных составляющих, в узкой полосе (Fo ± 1 MГц), f =1000 МГц с	SFDRN	80			дБ
Фазовые отклонения от 90° по выходам квадратурных ЦАП в полосе $(0-400 {\rm M} {\rm \Gamma u})$ без компенсации	dφ			1	Град
Амплитудные отклонения по выходам квадратурных					
ЦАП в полосе (0 – 400МГц) без компенсации	dA			0,5	дБ
Погрешность коэффициента усиления	GE	-10		10	%ПШ
Смещения нуля	OE		1	25	мкА
Температурный коэффициент усиления	TGE				ppm/C
Температурный коэффициент смещения нуля	TOE				ppm/C
Фазовый шум при частоте выходного сигнала 10 МГц, на отстройке			1.45		F /F
- 1κΓι			-145		дБн/Гц
- 10κΓμ			-155		дБн/Гц
- 100κΓц			-165		дБн/Гц
- 1MΓ _Ц			-172		дБн/Гц
Фазовый шум при частоте выходного сигнала 20 МГц, на					
отстройке			-140		#F++/F++
- 1κΓц - 10κΓц			-140		дБн/Гц
- 10k1 μ - 100κΓμ			-162		дБн/Гц дБн/Гц
- 100кг ц - 1МГц			-162		дьн/г ц дБн/Гц
Фазовый шум при частоте выходного сигнала 80 МГц, на		+	-107		дип/1 Ц
отстройке					
- 1кГц			-135		дБн/Гц
- 10κΓμ			-145		дБн/Гц
- 100κΓμ			-152		дБн/Гц
	1	1	-155	1	~~~·~

Параметр	Обозначен ие	Мин.	Тип.	Макс.	Размерн ость
Фазовый шум при частоте выходного сигнала 160 МГц,					0011
на отстройке					
- 10κΓμ			-140		дБн/Гц
- 100κΓιμ			-145		дБн/Гц
- 1МГц			-149		дБн/Гц
Компаратор		•	•		•
Входной ток	Icpin			±12	мкА
Входная емкость	Cepin			5	пФ
Величина гистерезиса	Vcph	30		45	мВ
Входное напряжение	Vin	-0,7		1,1	В
Уровень лог.1 на нагрузке 100 мкА	U OHCMP	1,4			В
Уровень лог.0 на нагрузке 100 мкА	U OLCMP			0.8	В
Задержка компаратора	Tcpd			3	нс
Длительность фронта на нагрузке 5пФ	Тсре			1	нс
Рабочая частота	Fcp	200			МГц
Среднеквадратичная величина дрожания фронта	Терј			1	пс
(«джиттер»)					
Динамический диапазон свободный от	SFDRcp	80			дБн
Паразитных составляющих					
Потребление					
Напряжения питания:					
контактных площадок	PVDD	3.13	3.3	3.47	В
цифровое ядра	CVDD	1.7	1.8	1.9	В
аналоговое	DVDD	1.7	1.8	1.9	В
аналоговое	AVDD	3.13	3.3	3.47	В
Динамические токи потребления:					
цифровое ядра (1,8 В)	Ioccc			400	мА
суммарный ток потребления аналоговых блоков и	$\Sigma I_{OCC(3,3)}$			100	мА
контактных площадок (3,3 В)					
Токи потребления (статические):					
суммарный от источников 1,8 В	ΣIcc(1,8)			10	мА
суммарный от источников 3,3 В	$\Sigma Icc(3,3)$			100	мА

Таблица 7. Предельные характеристики.

Параметр	Обозна	Минимум	Максимум	Размерност
	чение			Ь
Напряжения питания:				
- контактных площадок	PVDD			
- цифровое ядра	DVDD	-0.5	4.0	В
- аналоговое	AVDD	-0.5	4.0	В
Напряжение на аналоговых выводах		-0.5	AVDD+0.5	В
Напряжение на цифровых выводах		-0.5	DVDD+0.5	В
Температура хранения	Tenv	-65	+125	С
Температура выводов при пайке	Tlead		+250	С

9. ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ

Таблица 8. Временные характеристики (AVDD=1,8B, DVDD=1,8B, PVDD=3.3B, T=-60..+85°C, Cload=40п Φ)

Параметр	обозначение	Мин, нс	Тип, нс	Макс, нс
Период тактового сигнала CLK	t _{CLK}	1	0.9	пс
Длительность высокого уровня сигнала	t _{CLKHI}	0.3		
CLK	CLKHI			
Длительность низкого уровня сигнала CLK	t _{CLKLO}	0.3		
Длительность сигнала сброса RSTn	t _{RST}	$(t_{CLK}*10)$		
Интерфейс синхронизации	TGT	(CERT)		
Задержка формирования сигналов SEL	t _{csel}		3	
относительно внутренней тактовой частоты				
Задержка формирования сигналов CSYNC	t _{ccs}		$3+t_{CLK}*(SYNC.$	
относительно внутренней тактовой частоты			SYNC_Out_Phase-	
			1)	
Время установки сигналов SEL, CSYNC	t_{sucsc}		3	
относительно внутренней тактовой частоты				
Последовательный порт				
Период тактового сигнала SCLK	t_{SCLK}	max(20,		
		10*t _{CLK})		
Длительность высокого уровня сигнала	t _{SCLKHI}	10		
SCLK				
Длительность низкого уровня сигнала SCLK	t _{SCLKLO}	10		
Время установки сигнала SDI относительно	t_{SSDI}	2		
переднего фронта SCLK				
Время установки сигнала SCSn	t_{SSCSn}	2.5		
относительно переднего фронта SCLK				
Время удержания сигналов SDI	t_{HSDI}	0.5		
относительно переднего фронта SCLK				
Время удержания сигналов SCSn	t _{HSCSn}	0		
относительно переднего фронта SCLK				
Задержка формирования сигнала SDO	t_{DSDO}			6
относительно заднего фронта SCLK				
Задержка перехода сигнала SDO в	t_{DSDOZ}			6
высокоимпедансное состояние				
относительно заднего фронта SCLK				
Линк-порт: режимы SHARC				
Задержка формирование сигнала D	t_{DL}			3
относительно переднего фронта LCLK				
Время установки сигнала LACK	$t_{ m SL}$	8.5		
относительно переднего фронта LCLК				
Задержка формирование сигналов LCLK	t _{DPCLKLCLK}			8.5
относительно PCLK				